

# COMPARATIVE STUDY ON THE MORPHOLOGY AND BIOCHEMICAL COMPOSITION OF CEREAL SPECIES CULTIVATED IN THE PEDOCLIMATIC CONDITIONS OF THE CRIȘURILOR PLAIN

Ovidiu C. UNGUREANU<sup>1\*</sup>, Iulian O. STANA<sup>1</sup>, Viviane BOTA<sup>1,2,3</sup>, Marian CĂRĂBAȘ<sup>1</sup>, Elena UNGUREANU<sup>4</sup>, Endre MATHE<sup>1</sup>, Violeta TURCUȘ<sup>1,3</sup>

<sup>1</sup>Department of Biology and Life Sciences, "Vasile Goldiş" Western University of Arad <sup>2</sup>Doctoral School of Biology, "Alexandru Ioan Cuza" University of Iaşi <sup>3</sup>National Institute for Economic Research "Costin C. Kiritescu" of the Romanian Academy/ Centre for Mountain Economy (CE-MONT)

<sup>4</sup>Department of Exact Sciences, "Ion Ionescu de la Brad" Iași University of Life Sciences

**ABSTRACT:** The development of resilient crops and crop diversification strategies based on local conditions are of significant importance in the context of climate change and food security. In this study, we evaluated a series of morphological and biochemical indices, as well as the economic efficiency of 23 varieties from 4 main species of autumn cereals and 1 species of spring cereals, grown in the pedoclimatic conditions of Crișurilor Plain (Western region, Romania) during years 2018-2021. An experiment was carried out in 4 repetitions with the following species as experimental variants: V1 – winter wheat (7 varieties); V2 – autumn rye (2 varieties); V3 – autumn triticale (6 varieties); V4 – autumn barley (5 varieties); V5 – spring oats (4 varieties). The varieties included in the study are: V1 variant: Fundulea 4, Glosa, Flamura 85, Dropia, Apache, Lovrin 34, and Libelula; V2: Suceveana and Gloria; V3: Tulnic, Haiduc, Stil, Negoiu, Mv Medal and Oda Fd; V4: Amethyst, Belissa, Cardinal, Laverda, and Lucian, V5: Lovrin 1, Mureșana, Ovidiu and Jeremy. Evaluated parameters were: the height of the plants, the number of caryopses per inflorescence, Thousand Grain Weight (TGW), the hectoliter mass, the production of caryopses, the seed content in proteins, fats, and starch, and economic efficiency. The results offer a better perspective on the possibilities of expansion and diversification of cereal crops in the Western region of Romania.

**Keywords:** *Triticum aestivum, Secale cereale, Hordeum vulgare, Triticosecale, morphology, phytochemistry, Romania.* 

### INTRODUCTION

Cereal crop improvement is important in the context of climate change and food security. There is a need to develop resilient crops and crop diversification strategies based on local conditions (Wang et al., 2018; Dhankher and Foyer, 2018).

Climate change is having a negative impact on agricultural production, threatening food security. Studies to date estimate that global average temperatures will increase by 2.5 to 4.5°C by the end of the 21st century. And if temperatures rise by even 1 degree, wheat production could be affected by 3 to 10 percent (Wang et al., 2018). Cereals are a staple food for the majority of the world's population. Estimates for 2050 indicate that grain supplies will need to increase by 70-100% to meet the demands of a population of 9.8 trillion people. Such an increase is unattainable at current production rates in the context of decreasing fertile and arable land (Wang et al., 2018). Proposed solutions include the development of cereals tolerant to changing climatic conditions, increasing production of new varieties, diversifying crops in regions prone to food insecurity, and reducing the impact of agriculture on global warming (Wang et al., 2018).

The introduction of new varieties is seen as a crop diversification measure that can stabilize productivity and reduce negative environmental impacts (Hufnagel et al., 2020). This has already been observed in the case of Poland, where crop diversification has been found to be more intense in areas exposed to climatic risks, particularly drought, and frost, and has been successful in increasing farmers' resilience to climate change and stabilizing incomes (Kurdy's-Kujawska et al., 2021).

Globally, Europe contributes approximately 20% of cereal production, of which it exports around 15% net (Schils et al., 2018). As grain demand rises, Europe's capacity to increase its production will be of great importance, with the largest potential of meeting the challenges identified in Eastern Europe, including Romania. However, it is also in this region that the greatest differences in national yields have been observed (Schils et al., 2018).

In 2020, the main contributor to the total output of the agricultural industry in Romania was crops (64.9%), of which cereals were the main crop category (18.3%) (Săvescu and Rotaru, 2021).

According to the study by Chivu et al. (2020), agriculture is an important factor in the development of a region. In Romania, between 2001 and 2017, the West and North-West regions had some of the lowest efficiencies in agricultural production, including cereal production. Although these regions show an upward trend in the evolution of annual cereal production over the 17 years analyzed, the increase is lower than in the other regions of the country (Chivu et al., 2020). Both Chivu et al. and other authors (Burja and Burja, 2015, Vlad et al., 2015, Cocheci et al., 2016) argue that this is due to several factors that lead to a lack of competitiveness, including the lack of irrigation facilities. They also mention the need for studies

\*Correspondence: Ungureanu Ovidiu Costică, "Vasile Goldis" Western University of Arad, Faculty of Medicine, Departament of Biology and Life Sciences, Str. Liviu Rebreanu, No. 91-93, Arad, Romania, email: ungureanu.ovidiu@uvvg.ro

analyzing efficiency at the regional level, based on indicators relevant to agricultural production, as well as area-specific strategies to reduce the discrepancies in agricultural production efficiency that exist between regions of the country.

In view of the above, our study contributes new data on the possibilities of expansion and diversification of cereal crops in the Western region of Romania, with 23 varieties of 5 species.

Wheat (*Triticum aestivum* L.) is one of the oldest and most important grain crops, cultivated worldwide and a staple food for many countries. Presently the top producers are China and India because its cultivation requires less water than other crops. Its importance in the human diet, animal feed, and non-food applications, has made it subject to continuous improvement by breeders. New challenges require new studies to ensure its continuous and high-quality production to meet the world's growing demands (Igrejas and Branlard, 2020).

Rye (*Secale cereale* L.) has been cultivated in Europe for over 3000 years, especially in areas where the pedoclimatic conditions are unfavorable for other cereal crops. Its fiber content is one of the highest among the common grain crops and is valued as a great source of nutritional and bioactive compounds. It is the second most used raw material after wheat for bread and bakery products. Its uses cover a much wider range of products destined for human and animal consumption (Ikram et al., 2023). The top global producer is the European Union (65%), followed by Russia (15%), Belarus (7%), Canada and Turkey (3%) (USDA, 2023).

Triticale (x Triticosecale Wittm.) is a hybrid between Triticum aestivum and Secale cereale, created for high yield, disease tolerance, and unique nutritional profile crops (Kamanova et al., 2023). It is suitable for agricultural areas where wheat is less productive, lands affected by lack or surplus of water, poor in nutrients as well as acidic or salty (David et al, 2011; FAO, 2023; Kamanova et al, 2023). Its grains are richer in vitamins and minerals than those of rye or wheat (Chopade et al., 2017). The global demand for Triticale has risen in recent years because of its high nutritional value, high protein content (particularly lysine), and specific phytochemical profile with health benefits like dietary products for patients with metabolic diseases (ex. diabetes) (FAOSTAT, 2018, Kamanova et al, 2023). The main Triticale producers for more than 10 years are countries like Poland, Germany, France, and Belarus (FAOSTAT 2018, 2023).

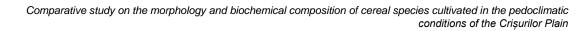
Barley (*Hordeum vulgare* L.) is one of the first domesticated crops, used for both human and animal consumption, and malt production. While has remained an essential food source for some cultures in Asia and North Africa, in other parts of the world, its use as a food grain has been neglected for a while in favor of wheat. However, the interest in barley has recently increased, given its content of dietary fibers (particularly betaglucans) and health benefits (hypocholesterolemic and hypoglycemic effects), and has the potential for partial or full replacement of currently used grains for a wide variety of cereal-based products. Its world production has remained relatively stable for the past 15 years, with the European Union being the lead producer (Lukinak and Jukić, 2022).

Oat (Avena sativa L.) is one of the oldest crops, being cultivated worldwide for over 2000 years. This cereal crop is being valued not only for its nutritional value in human and animal diets but also for its bioactive compounds (phenolic acids, tocols. sterols. avenacosides, avenathramides) valuable for health care and cosmetics (Paudel et al., 2021). The top oat producers are the European Union, Russia, and North America, in 2020 accounting for 79% of global production. Even so, in 2021, the European Union imported over 9000 tons of raw oats from countries like Ukraine, Uruguay, and Russia. Approximately 50% of the current global oats production is used for animal feed and under 10% is destined for human consumption (IUCN NL, 2023).

For this study, 23 varieties of 5 cereal species were selected: 6 for wheat, 2 for rye, 6 for triticale, 5 for barley, and 4 for oats. These varieties were included in previous studies focused on each species, and showed good adaptability to the soil and climatic conditions of the Crişurilor Plain (Western Region of Romania) (Ungureanu et al., 2019, 2020a, 2021a, 2022).

A series of morphological indices influencing crop production were analyzed, as well as biochemical indices relevant to the nutritional value and the possible crop uses. Finally, economic efficiency was calculated, an essential criterion in the optimization of the crop structure (Ungureanu et al., 2021b).

# MATERIALS AND METHODS


The experimental crops were cultivated on alluvial soil with the following characteristics: pH = 7 - 7,5; Humus = 3,1 - 3,9 %; Argil = 33 - 35 %; Groundwater depth = 50 - 60 cm; Mobile Phosphorus = 13,44 mg/100g soil; Total Nitrogen = 0,16 - 0,18 mg/100g soil. The plots had a surface of 20 m<sup>2</sup>, with 10 m Length, and 2 m Width, with a protection space of 3 m Width, 2 m space between repetitions, and 0,5 m rows between variants.

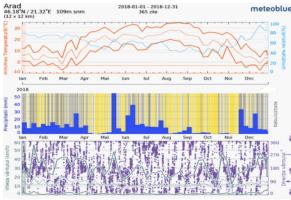
The experimental varieties were:

- *Triticum aestivum* L. from the varieties: Fundulea
  4, Glosa, Flamura 85, Dropia, Apache, Lovrin 34, and Libelula;
- Secale cereale L. of the varieties: Suceava, Gloria;
- *Triticosecale* varieties: Tulnic, Haiduc, Stil, Negoiu, Mv Medal, Oda Fd;
- Hordeum vulgare L. from the varieties: Amethyst, Belissa, Cardinal, Laverda, and Lucian;
- Avena sativa L. from the varieties: Lovrin 1, Muresana, Ovidiu, Jeremy.

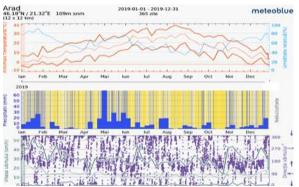
Soil works consisted of autumn plowing at 20 - 25 cm depth, keeping clean of weeds until sowing; disking with a harrow in springtime, and preparing the germination layer with a combine harvester at 4 - 5 cm depth. Sowing was done in autumn, in the first decade of October, and in the spring in the first decade of March at a depth of 3-5 cm. During the vegetation periods, the plots were kept clean of weeds by specific care works.

Fertilization was made during the preparation of the germination layer with NPK complex fertilizer, as follows: for wheat, triticale, and rye - N = 100 kg/ha, P = 45 kg/ha, K = 90 kg/ha; for barley and oats - N = 80 kg/ha, P = 60 kg/ha, K = 50 kg/ha.

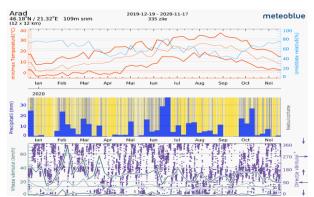



The experiment was carried out with 5 species of cereals in 4 repetitions with the following experimental variants: V1 - wheat; V2 - rye; V3 - triticale; V4 - barley; V5 - oats (Săndoiu, 2012).

## RESULTS AND DISCUSSIONS Climatic conditions from 2018-2021

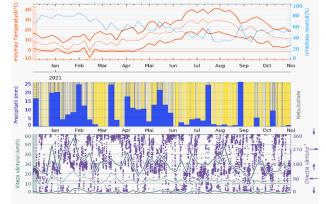

The temperature conditions, rainfalls, nebulosity, and relative humidity didn't register significant differences compared to the multiannual media.

The temperatures, during the autumn wheat cultivation period, respectively the months from October to June, were slightly above the average. Regarding precipitation, the species requirements were met during most of the growing season, but the lack of precipitations in late April and early May affected varieties sensitive to this climatic factor. During the period of ear/spikes formation and grain filling (April 20 - May 10), a lack of humidity was recorded along with a temperature rise, which decreased water and thermal comfort with implications for the growth and development of plants from variants that included several varieties of lower drought-resistance.


Despite the temperature and precipitation changes mentioned above, the climatic conditions during 2018-2021 allowed the successful cultivation of the 5 species of crops. (Figures 1,2,3,4).



**Fig. 1.** Average values of temperatures and precipitations for the year 2018 in the Arad area. Red – min/max temperature (°C), Light blue – relative humidity (%), Dark blue – precipitations (mm), Vertical grey stripes – nebulosity, Green – wind speed (km/h), Purple arrows – wind direction (https://www.meteoblue.com- Arhiva meteo Arad).




**Fig. 2.** Average values of temperatures and precipitations for the year 2019 in the Arad area. Red – min/max temperature (°C), Light blue – relative humidity (%), Dark blue – precipitations (mm), Vertical grey stripes – nebulosity, Green – wind speed (km/h), Purple arrows – wind direction (https://www.meteoblue.com- Arhiva meteo Arad).



**Fig. 3.** Average values of temperatures and precipitations for the year 2020 in the Arad area. Red – min/max temperature (°C), Light blue – relative humidity (%), Dark blue – precipitations (mm), Vertical grey stripes – nebulosity, Green – wind speed (km/h), Purple arrows – wind direction (https://www.meteoblue.com- Arhiva meteo Arad).





**Fig. 4.** Average values of temperatures and precipitations for the year 2021 in the Arad area. Red – min/max temperature (°C), Light blue – relative humidity (%), Dark blue – precipitations (mm), Vertical grey stripes – nebulosity, Green – wind speed (km/h), Purple arrows – wind direction (https://www.meteoblue.com- Arhiva meteo Arad).

#### Results

In the case of the selected varieties of wheat, rye, triticale, barley, and oats, the pedoclimatic conditions of Crișurilor Plain during 2018-2021, and the use of cultivation methodology recommended by cereal specialists (Săndoiu, 2012), resulted in the optimal growth and development of the crops. The maximum

plant height was recorded in rye cultivars with an average value of 143.5 cm, and the minimum plant height was found in wheat with a length of 89 cm. The other species taken into the study had an average plant height of 113.5 cm (triticale), 99 cm (barley), and 95 cm (oats), respectively (Table 1).

Table 1.

The influence of pedoclimatic conditions on the plant size of wheat, rye, triticale, barley, and oats during 2018 - 2021

| No | Species                               | Variety       | Plant size<br>(cm) | Difference to<br>wheat<br>(cm) | Difference to<br>average<br>(cm) |
|----|---------------------------------------|---------------|--------------------|--------------------------------|----------------------------------|
|    |                                       | Fundulea 4    | 84                 |                                |                                  |
|    |                                       | Glosa         | 95                 | -                              |                                  |
|    |                                       | Flamura 85    | 86                 |                                |                                  |
| 1  | Wheat                                 | Dropia        | 90                 |                                |                                  |
| 1  | (Triticum aestivum L.)                | Apache        | 91                 | 0                              | -19                              |
|    |                                       | Lovrin 34     | 94                 |                                |                                  |
|    |                                       | Libelula      | 88                 |                                |                                  |
|    |                                       | Average value | 89                 |                                |                                  |
|    | Bue                                   | Suceveana     | 136                |                                |                                  |
| 2  | Rye<br>(Secale cereale L)             | Gloria        | 151                | 54.5                           | 35.5                             |
|    |                                       | Average value | 143.5              |                                |                                  |
|    | Triticale<br>( <i>Triticosecale</i> ) | Tulnic        | 115                |                                |                                  |
|    |                                       | Haiduc        | 117                |                                |                                  |
|    |                                       | Stil          | 110                | 24.5                           |                                  |
| 3  |                                       | Negoiu        | 116                |                                | 5.5                              |
|    |                                       | Mv Medal      | 111                |                                |                                  |
|    |                                       | Oda Fd        | 112                |                                |                                  |
|    |                                       | Average value | 113.5              |                                |                                  |
|    |                                       | Ametist       | 95                 |                                | -9                               |
|    |                                       | Belissa       | 108                |                                |                                  |
| 4  | Barley                                | Cardinal      | 97                 | - 10                           |                                  |
| 4  | (Hordeum vulgare L.)                  | Laverda       | 102                | 10                             | -9                               |
|    |                                       | Lucian        | 93                 |                                |                                  |
|    |                                       | Media         | 99                 |                                |                                  |
|    |                                       | Lovrin 1      | 87                 |                                |                                  |
|    | Oats                                  | Mureşana      | 102                | 7                              |                                  |
| 5  |                                       | Ovidiu        | 98                 | 6                              | -13                              |
|    | (Avena sativa L.)                     | Jeremy        | 93                 | 7                              |                                  |
|    | Í Í                                   | Average value | 95                 | 1                              |                                  |
| 6  | Reference                             | Average       | 108                | -19                            | 0                                |

The pedoclimatic conditions from 2018-2021 in the Crișurilor Plain along with the applied cultivation methodology, had a positive influence on the growth and development of the selected cereal crops and is well reflected in the number of caryopses per inflorescence. It should be noted that in oats, where the inflorescence is a panicle, the average number of caryopses / inflorescence was 91.5, and in the other cereals where

the inflorescence is a spike the number of caryopses / inflorescence was 54 for rye, 46 for barley, and 34 for wheat and triticale, respectively (Table 2).

The Thousand Grain Weight (TGW) of the 5 species cultivated recorded an average value of 46.2 g. Barley had the highest TGW, with a value of 49 g, highlighting

the crops' good adaptation to the pedoclimatic conditions. The lowest TGW was found in oats with a value of 34.4 g. For the other grains, TGW had the following values: triticale: 46 g, wheat: 43 g, and rye: 40.5 g (Table 3).

Table 2.

| The influence of pedoclimatic conditions of   | n the number of carvonses  | / inflorescence during 2018 - 2021   |
|-----------------------------------------------|----------------------------|--------------------------------------|
| The initialice of periodi matic conditions of | in the number of caryopses | / 11110163061106 0011119 2010 - 2021 |

| No | Species                               | Variety       | No. of<br>caryopses/<br>inflorescence | Difference to wheat | Difference to average |
|----|---------------------------------------|---------------|---------------------------------------|---------------------|-----------------------|
|    |                                       | Fundulea 4    | 33                                    |                     |                       |
|    |                                       | Glosa         | 34                                    |                     |                       |
|    |                                       | Flamura 85    | 34                                    |                     |                       |
| 4  | Wheat                                 | Dropia        | 35                                    |                     | 0.05                  |
| 1  | (Triticum aestivum L.)                | Apache        | 33                                    | 0                   | - 9.25                |
|    |                                       | Lovrin 34     | 35                                    |                     |                       |
|    |                                       | Libelula      | 34                                    |                     |                       |
|    |                                       | Average value | 34                                    |                     |                       |
|    | Dura                                  | Suceveana     | 55                                    |                     |                       |
| 2  | Rye                                   | Gloria        | 53                                    | 20                  | 10.75                 |
|    | (Secale cereale L)                    | Average value | 54                                    |                     |                       |
|    | Triticale<br>( <i>Triticosecale</i> ) | Tulnic        | 35                                    | 0                   | -9.25                 |
|    |                                       | Haiduc        | 34                                    |                     |                       |
|    |                                       | Stil          | 33                                    |                     |                       |
| 3  |                                       | Negoiu        | 35                                    |                     |                       |
|    |                                       | Mv Medal      | 33                                    |                     |                       |
|    |                                       | Oda Fd        | 34                                    |                     |                       |
|    |                                       | Average value | 34                                    |                     |                       |
|    |                                       | Ametist       | 44                                    |                     | 0.75                  |
|    |                                       | Belissa       | 51                                    |                     |                       |
| 4  | Barley                                | Cardinal      | 45                                    | 12                  |                       |
| 4  | (Hordeum vulgare L.)                  | Laverda       | 47                                    | 12                  | 2.75                  |
|    |                                       | Lucian        | 43                                    |                     |                       |
|    |                                       | Average value | 46                                    |                     |                       |
|    |                                       | Lovrin 1      | 92                                    |                     |                       |
|    | Oats                                  | Mureșana      | 90                                    |                     |                       |
| 5  |                                       | Ovidiu        | 93                                    | 57,5                | 48.25                 |
|    | (Avena sativa L.)                     | Jeremy        | 91                                    |                     | 10.20                 |
|    |                                       | Average value | 91.5                                  |                     |                       |
| 6  | Reference                             | Average       | 43.25                                 | 9.25                | 0                     |

#### Table 3.

The influence of pedoclimatic conditions on the Thousand Grain Weight (TGW) during 2018 - 2021

| No | Species                   | Variety       | TGW (g) | Difference to<br>wheat (g) | Difference to<br>average (g) |
|----|---------------------------|---------------|---------|----------------------------|------------------------------|
|    |                           | Fundulea 4    | 40      |                            |                              |
|    |                           | Glosa         | 43      |                            |                              |
|    |                           | Flamura 85    | 44      |                            |                              |
| 4  | Wheat                     | Dropia        | 45      |                            | 0.4                          |
| 1  | (Triticum aestivum L.)    | Apache        | 42      | 0                          | 0.4                          |
|    |                           | Lovrin 34     | 44      |                            |                              |
|    |                           | Libelula      | 41      |                            |                              |
|    |                           | Average value | 43      |                            |                              |
|    | Due                       | Suceveana     | 41.5    | -2.5                       | -2.1                         |
| 2  | Rye<br>(Secale cereale L) | Gloria        | 39.5    |                            |                              |
|    |                           | Average value | 40.5    |                            |                              |
|    |                           | Tulnic        | 45      |                            |                              |
|    |                           | Haiduc        | 48      |                            |                              |
| 3  | Triticale                 | Stil          | 47      | 3                          | 2.4                          |
| 3  | (Triticosecale)           | Negoiu        | 46      | ] 3                        | 3.4                          |
|    |                           | Mv Medal      | 48      |                            |                              |
|    |                           | Oda Fd        | 44      |                            |                              |



| No | Species              | Variety       | TGW (g) | Difference to<br>wheat (g) | Difference to<br>average (g) |
|----|----------------------|---------------|---------|----------------------------|------------------------------|
|    |                      | Average value | 46      |                            |                              |
|    |                      | Ametist       | 49      |                            |                              |
|    | [                    | Belissa       | 50      |                            |                              |
| 4  | Barley               | Cardinal      | 48.5    |                            | 6.4                          |
| 4  | (Hordeum vulgare ∟.) | Laverda       | 49.5    | 6                          |                              |
|    |                      | Lucian        | 48      |                            |                              |
|    |                      | Average value | 49      |                            |                              |
|    |                      | Lovrin 1      | 32      | -                          | -8.1                         |
|    | 0                    | Mureşana      | 35      |                            |                              |
| 5  | Oats                 | Ovidiu        | 38      | -8.5                       |                              |
|    | (Avena sativa L.)    | Jeremy        | 33      |                            |                              |
|    |                      | Average value | 34.5    |                            |                              |
| 6  | Reference            | Average       | 42.6    | -0.4                       | 0                            |

The hectoliter mass (HM), is of particular importance for the grading of cereals, and their silage but also for the correlation between this parameter and the quality of flour, especially. The HM value was between 47 kg for oats and 77 kg for wheat, with intermediate values obtained for triticale: 73.5 kg, rye: 73 kg, and barley: 64.5 kg (Table 4).

Table 4.

The influence of pedoclimatic conditions on the hectoliter mass (HM) during 2018 - 2021

| No | Species                               | Variety               | HM (Kg) | Difference to<br>wheat (Kg) | Difference to<br>average (Kg) |
|----|---------------------------------------|-----------------------|---------|-----------------------------|-------------------------------|
|    |                                       | Fundulea 4            | 77      |                             |                               |
|    |                                       | Glosa                 | 78      |                             |                               |
|    |                                       | Flamura 85            | 79      |                             |                               |
| 1  | Wheat                                 | Dropia                | 80      | 0                           | 10                            |
| I  | (Triticum aestivum L.)                | Apache                | 75      | 0                           | 10                            |
|    |                                       | Lovrin 34             | 75      |                             |                               |
|    |                                       | Libelula              | 76      |                             |                               |
|    |                                       | Average for wheat     | 77      |                             |                               |
|    | Rye                                   | Suceveana             | 73.5    |                             |                               |
| 2  | (Secale cereale L)                    | Gloria                | 72.5    | -4                          | 6                             |
|    | (Secale cereale L)                    | Average for rye       | 73      |                             |                               |
|    | Triticale<br>( <i>Triticosecale</i> ) | Tulnic                | 74      | -3.5                        | 6.5                           |
|    |                                       | Haiduc                | 73      |                             |                               |
|    |                                       | Stil                  | 73      |                             |                               |
| 3  |                                       | Negoiu                | 73      |                             |                               |
|    |                                       | Mv Medal              | 74      |                             |                               |
|    |                                       | Oda Fd                | 74      |                             |                               |
|    |                                       | Average for triticale | 73      |                             |                               |
|    |                                       | Ametist               | 64      |                             |                               |
|    |                                       | Belissa               | 65      |                             |                               |
| 4  | Barley                                | Cardinal              | 63      | -2.5                        | -2.5                          |
| 7  | (Hordeum vulgare L.)                  | Laverda               | 64.5    | -2.5                        | -2.5                          |
|    |                                       | Lucian                | 66      |                             |                               |
|    |                                       | Average for barley    | 64.5    |                             |                               |
|    |                                       | Lovrin 1              | 46      |                             |                               |
|    | Oats                                  | Mureșana              | 47      |                             |                               |
| 5  | (Avena sativa L.)                     | Ovidiu                | 47.5    | -30                         | -20                           |
|    |                                       | Jeremy                | 47.5    |                             |                               |
|    |                                       | Average for oats      | 47      |                             |                               |
| 6  | Reference                             | Average               | 67      | -10                         | 0                             |

The positive impact of the pedoclimatic conditions of the area and cultivation methodology is also reflected in the seed production in relation to the surface unit. It should be noted that in triticale and barley, the productions exceeded 7000 kg/ha with values of 7870 kg/ha and 7130 kg/ha respectively. The other experimental variants (wheat, rye, oats) achieved valuable productions, indicating a good adaptation to the climate and soil conditions of the area (Table 5).

In this study, we also analyzed the effect of the pedoclimatic conditions on the seed contents in proteins,

fats, and starch. The average value for all species, which also served as a witness / reference, was 12.54%, the oats displaying the highest seed protein content (14.4%), and the rye having the lowest seed protein content (3%).

Usually, the high production of cereals, particularly wheat, is negatively correlated with the protein content, and it is known to affect the biological stability by denaturing the primary structure of proteins, the amino acid chain, with direct repercussions in food processes, such as panification (Ungureanu *et al.*, 2020b; Chen et al., 2022). In this case, the wheat varieties registered an

Studia Universitatis "Vasile Goldiş", Seria Ştiinţele Vieţii Vol. 33, issue 1, 2023, pp. 24 - 34



average value of 12 % seed protein content, considered favorable for panification (YARA, 2011) (Table 6).

Regarding the seed fat content, it can be observed in Table 7 that it was highest in oats, with an average value

of 4.9 %, followed by barley: 2.4 %, wheat: 1.8 %, rye - 1.7 %, and triticale 1.6 %.

Table 5.

| The influence of | f pedoclimatic conditions on the seeds production / surface unit during 2018 - 2021 | 1 |
|------------------|-------------------------------------------------------------------------------------|---|

| No | Species                               | Variety               | Seeds<br>production<br>(Kg/ha) | Difference to<br>wheat (Kg/ha) | Difference to average (Kg/ha) |
|----|---------------------------------------|-----------------------|--------------------------------|--------------------------------|-------------------------------|
|    |                                       | Fundulea 4            | 5400                           |                                |                               |
|    |                                       | Glosa                 | 6800                           |                                |                               |
|    |                                       | Flamura 85            | 5800                           |                                |                               |
| 1  | Wheat                                 | Dropia                | 6200                           | 0                              | 10                            |
| I  | (Triticum aestivum L.)                | Apache                | 6100                           | 0                              | 10                            |
|    |                                       | Lovrin 34             | 5900                           |                                |                               |
|    |                                       | Libelula              | 5700                           |                                |                               |
|    |                                       | Average for wheat     | 6000                           |                                |                               |
|    | Rye                                   | Suceveana             | 6350                           |                                |                               |
| 2  | (Secale cereale L)                    | Gloria                | 5250                           | -4                             | 6                             |
|    | (Secale cereale L)                    | Average for rye       | 5800                           |                                |                               |
|    | Triticale<br>( <i>Triticosecale</i> ) | Tulnic                | 7870                           | -3.5                           |                               |
|    |                                       | Haiduc                | 8160                           |                                |                               |
|    |                                       | Stil                  | 7750                           |                                |                               |
| 3  |                                       | Negoiu                | 8050                           |                                | 6.5                           |
|    |                                       | Mv Medal              | 7920                           |                                |                               |
|    |                                       | Oda Fd                | 7480                           |                                |                               |
|    |                                       | Average for triticale | 7870                           |                                |                               |
|    |                                       | Ametist               | 6930                           |                                |                               |
|    |                                       | Belissa               | 7260                           |                                | -2.5                          |
| 4  | Barley                                | Cardinal              | 6980                           | -2.5                           |                               |
| 4  | (Hordeum vulgare L.)                  | Laverda               | 7310                           | -2.5                           | -2.0                          |
|    |                                       | Lucian                | 7170                           |                                |                               |
|    |                                       | Average for barley    | 7130                           |                                |                               |
|    |                                       | Lovrin 1              | 4350                           |                                |                               |
|    | Oats                                  | Mureșana              | 4420                           |                                |                               |
| 5  | (Avena sativa L.)                     | Ovidiu                | 4840                           | -30                            | -20                           |
|    |                                       | Jeremy                | 4510                           |                                |                               |
|    |                                       | Average for oats      | 4530                           |                                |                               |
| 6  | Reference                             | Average               | 6266                           | -10                            | 0                             |

#### Table 6.

The influence of pedoclimatic conditions on the seeds' protein content during 2018 - 2021

| No | Species                   | Variety               | Protein<br>contents (%) | Difference to<br>wheat (%) | Difference to average (%) |
|----|---------------------------|-----------------------|-------------------------|----------------------------|---------------------------|
|    |                           | Fundulea 4            | 11                      |                            |                           |
|    |                           | Glosa                 | 13                      |                            |                           |
|    |                           | Flamura 85            | 12                      |                            |                           |
| 1  | Wheat                     | Dropia                | 13                      | 0                          | -0.54                     |
| I  | (Triticum aestivum L.)    | Apache                | 11                      | 0                          | -0.54                     |
|    |                           | Lovrin 34             | 13                      |                            |                           |
|    |                           | Libelula              | 12                      |                            |                           |
|    |                           | Average for wheat     | 12                      |                            |                           |
|    | Rye<br>(Secale cereale L) | Suceveana             | 12.8                    | 1                          | 0.46                      |
| 2  |                           | Gloria                | 13.2                    |                            |                           |
|    |                           | Average for rye       | 13                      |                            |                           |
|    |                           | Tulnic                | 12.1                    |                            |                           |
|    |                           | Haiduc                | 11.5                    |                            |                           |
|    | Triticale                 | Stil                  | 11.4                    |                            |                           |
| 3  |                           | Negoiu                | 11.6                    | -0.3                       | -0.84                     |
|    | (Triticosecale)           | Mv Medal              | 11.9                    |                            |                           |
|    |                           | Oda Fd                | 12                      |                            |                           |
|    |                           | Average for triticale | 11.7                    |                            |                           |
| 4  | Barley                    | Ametist               | 11                      | -0.4                       | -0.94                     |



| No | Species              | Variety            | Protein<br>contents (%) | Difference to<br>wheat (%) | Difference to<br>average (%) |
|----|----------------------|--------------------|-------------------------|----------------------------|------------------------------|
|    | (Hordeum vulgare L.) | Belissa            | 13.2                    |                            |                              |
|    |                      | Cardinal           | 10.6                    |                            |                              |
|    |                      | Laverda            | 12.9                    |                            |                              |
|    |                      | Lucian             | 10.3                    |                            |                              |
|    |                      | Average for barley | 11.6                    |                            |                              |
|    |                      | Lovrin 1           | 14.4                    |                            |                              |
|    | Oata                 | Mureşana           | 14.1                    |                            |                              |
| 5  | Oats                 | Ovidiu             | 14.3                    | 2,4                        | 1.86                         |
|    | (Avena sativa L.)    | Jeremy             | 14.8                    |                            |                              |
|    |                      | Average for oats   | 14.4                    |                            |                              |
| 6  | Reference            | Average            | 12.54                   | 0.54                       | 0                            |

### Table 7.

The influence of pedoclimatic conditions on the seed fat content during 2018 - 2021

| No | Species                               | Variety               | Fat contents<br>(%) | Difference to<br>wheat (%) | Difference to average (%) |
|----|---------------------------------------|-----------------------|---------------------|----------------------------|---------------------------|
|    |                                       | Fundulea 4            | 2                   |                            |                           |
|    |                                       | Glosa                 | 1.7                 |                            |                           |
|    |                                       | Flamura 85            | 1.8                 |                            |                           |
| 1  | Wheat                                 | Dropia                | 1.5                 | 0                          | -0.68                     |
| I  | (Triticum aestivum L.)                | Apache                | 1.9                 | 0                          | -0.08                     |
|    |                                       | Lovrin 34             | 1.6                 |                            |                           |
|    |                                       | Libelula              | 2                   |                            |                           |
|    |                                       | Average for wheat     | 1.8                 |                            |                           |
|    | Bue                                   | Suceveana             | 1.8                 |                            |                           |
| 2  | Rye                                   | Gloria                | 1.6                 | -0.1                       | -0.78                     |
|    | (Secale cereale L)                    | Average for rye       | 1.7                 |                            |                           |
|    | Triticale<br>( <i>Triticosecale</i> ) | Tulnic                | 1.5                 | -0.2                       | -0.88                     |
|    |                                       | Haiduc                | 1.6                 |                            |                           |
|    |                                       | Stil                  | 1.7                 |                            |                           |
| 3  |                                       | Negoiu                | 1.7                 |                            |                           |
|    |                                       | Mv Medal              | 1.6                 |                            |                           |
|    |                                       | Oda Fd                | 1.5                 |                            |                           |
|    |                                       | Average for triticale | 1.6                 |                            |                           |
|    |                                       | Ametist               | 2.4                 |                            | -0.08                     |
|    |                                       | Belissa               | 2.2                 |                            |                           |
| 4  | Barley                                | Cardinal              | 2.5                 | 0.6                        |                           |
| 4  | (Hordeum vulgare L.)                  | Laverda               | 2.3                 | 0.0                        |                           |
|    |                                       | Lucian                | 2.6                 |                            |                           |
|    |                                       | Average for barley    | 2.4                 |                            |                           |
|    |                                       | Lovrin 1              | 4.8                 |                            |                           |
|    | Oats                                  | Mureșana              | 5.2                 |                            | 2.42                      |
| 5  |                                       | Ovidiu                | 5                   | 3.1                        |                           |
|    | (Avena sativa L.)                     | Jeremy                | 4.6                 |                            |                           |
|    |                                       | Average for oats      | 4.9                 |                            |                           |
| 6  | Reference                             | Average               | 2.48                | 0.68                       | 0                         |

The percentage of seed starch content is acceptable for human consumption as well as for animal feed and industrial processes (Maningat et al., 2009). The analyzed genotypes contained on average 62.26 % starch, with a maximum in barley - 65.1 %, and a minimum in oats - 49.3 %; the wheat - 62.8 %, triticale - 62.2 %, and the rye - 61.9 % having similar values (Table 8).

Table 8.

| The influence of | pedoclimatic conditions | on the seeds' starch | content during 2018 - 2021 |
|------------------|-------------------------|----------------------|----------------------------|
|                  | pouoonnauo oonauono     |                      |                            |

| No | Species                                 | Variety    | Starch<br>contents (%) | Difference to<br>wheat (%) | Difference to<br>average (%) |
|----|-----------------------------------------|------------|------------------------|----------------------------|------------------------------|
|    | Wheat<br>( <i>Triticum aestivum</i> L.) | Fundulea 4 | 62.6                   |                            | 0.54                         |
|    |                                         | Glosa      | 63.1                   | 0                          |                              |
|    |                                         | Flamura 85 | 62.9                   |                            |                              |
| 1  |                                         | Dropia     | 62.8                   |                            |                              |
|    |                                         | Apache     | 62.6                   |                            |                              |
|    |                                         | Lovrin 34  | 62.7                   |                            |                              |
|    |                                         | Libelula   | 62.9                   |                            |                              |

| No | Species                               | Variety               | Starch<br>contents (%) | Difference to<br>wheat (%) | Difference to<br>average (%) |
|----|---------------------------------------|-----------------------|------------------------|----------------------------|------------------------------|
|    |                                       | Average for wheat     | 62.8                   |                            |                              |
|    | Rye<br>(Secale cereale L)             | Suceveana             | 62.5                   |                            | -0.6                         |
| 2  |                                       | Gloria                | 61.3                   | -0.9                       |                              |
|    |                                       | Average for rye       | 61.9                   |                            |                              |
|    | Triticale<br>( <i>Triticosecale</i> ) | Tulnic                | 62.2                   |                            | -0.06                        |
|    |                                       | Haiduc                | 62.4                   |                            |                              |
|    |                                       | Stil                  | 62.0                   |                            |                              |
| 3  |                                       | Negoiu                | 62.3                   | -0.6                       |                              |
|    |                                       | Mv Medal              | 62.2                   |                            |                              |
|    |                                       | Oda Fd                | 62.1                   |                            |                              |
|    |                                       | Average for triticale | 62.2                   |                            |                              |
|    | Barley<br>(Hordeum vulgare L.)        | Ametist               | 65                     |                            | 2.84                         |
|    |                                       | Belissa               | 63.5                   |                            |                              |
| 4  |                                       | Cardinal              | 66                     | 2.3                        |                              |
| 4  |                                       | Laverda               | 64.5                   | 2.5                        |                              |
|    |                                       | Lucian                | 66.5                   |                            |                              |
|    |                                       | Average for barley    | 65.1                   |                            |                              |
|    | Oats<br>(Avena sativa L.)             | Lovrin 1              | 49.5                   |                            | -12.96                       |
| 5  |                                       | Mureșana              | 48.7                   |                            |                              |
|    |                                       | Ovidiu                | 49.1                   | -13.5                      |                              |
|    |                                       | Jeremy                | 49.9                   |                            |                              |
|    |                                       | Average for oats      | 49.3                   |                            |                              |
| 6  | Reference                             | Average               | 62.26                  | -0.54                      | 0                            |

From an economic point of view, the cultivation of the selected cereal varieties in the pedoclimatic conditions of the Crișurilor Plain has led to positive results, with profits between 2310 RON/ha (barley) and 3217 RON/ha (oats). The profit for triticale was 3196 RON/ha, positioning this crop as the second-best choice next to oats, closely followed by wheat and rye, for which the profits were 2700 RON/ha, and 2321 RON/ha, respectively (Table 9).

## Table 9.

The influence of pedoclimatic conditions on the economic efficiency of evaluated cereal crops during 2018 - 2021

| No | Species                               | Variety                  | Grain<br>production<br>(kg/ha) | Value grain<br>production<br>(RON/ha) | Profit<br>(RON/ha) | Difference<br>to wheat (%) | Difference to average (%) |
|----|---------------------------------------|--------------------------|--------------------------------|---------------------------------------|--------------------|----------------------------|---------------------------|
|    | Wheat                                 | Fundulea 4               | 5400                           | 5130                                  | 2130               |                            | -48.8                     |
|    |                                       | Glosa                    | 6800                           | 6460                                  | 3460               |                            |                           |
|    |                                       | Flamura 85               | 5800                           | 5510                                  | 2510               |                            |                           |
|    |                                       | Dropia                   | 6200                           | 5890                                  | 2890               |                            |                           |
| 1  | (Triticum                             | Apache                   | 6100                           | 5795                                  | 2795               | 0                          |                           |
|    | aestivum L.)                          | Lovrin 34                | 5900                           | 5605                                  | 2605               |                            |                           |
|    |                                       | Libelula                 | 5700                           | 5415                                  | 2415               |                            |                           |
|    |                                       | Average for<br>wheat     | 6000                           | 5700                                  | 2700               |                            |                           |
|    | Rye<br>(Secale cereale<br>L)          | Suceveana                | 6350                           | 5715                                  | 2815               | -379                       | -427.8                    |
| 2  |                                       | Gloria                   | 5250                           | 4727                                  | 1827               |                            |                           |
| 2  |                                       | Average for<br>rye       | 5800                           | 5221                                  | 2321               |                            |                           |
|    | Triticale<br>( <i>Triticosecale</i> ) | Tulnic                   | 7870                           | 6296                                  | 3196               | 496                        | 447.2                     |
|    |                                       | Haiduc                   | 8160                           | 6528                                  | 3428               |                            |                           |
|    |                                       | Stil                     | 7750                           | 6200                                  | 3100               |                            |                           |
| 3  |                                       | Negoiu                   | 8050                           | 6440                                  | 3340               |                            |                           |
| 5  |                                       | Mv Medal                 | 7920                           | 6336                                  | 3236               |                            |                           |
|    |                                       | Oda Fd                   | 7480                           | 5984                                  | 2884               |                            |                           |
|    |                                       | Average for<br>triticale | 7870                           | 6296                                  | 3196               |                            |                           |
|    | Barley<br>(Hordeum<br>vulgare L.)     | Ametist                  | 6930                           | 6237                                  | 3037               | 507                        | 468.2                     |
|    |                                       | Belissa                  | 7260                           | 6534                                  | 3334               |                            |                           |
|    |                                       | Cardinal                 | 6980                           | 6282                                  | 3082               |                            |                           |
| 4  |                                       | Laverda                  | 7310                           | 6579                                  | 3379               |                            |                           |
|    |                                       | Lucian                   | 7170                           | 6453                                  | 3253               |                            |                           |
|    |                                       | Average for<br>barley    | 7130                           | 6417                                  | 3217               |                            |                           |

Studia Universitatis "Vasile Goldiş", Seria Ştiinţele Vieţii Vol. 33, issue 1, 2023, pp. 24 - 34 © 2023 Vasile Goldis University Press (www.studiauniversitatis.ro)



| No | Species                             | Variety             | Grain<br>production<br>(kg/ha) | Value grain<br>production<br>(RON/ha) | Profit<br>(RON/ha) | Difference<br>to wheat (%) | Difference to average (%) |
|----|-------------------------------------|---------------------|--------------------------------|---------------------------------------|--------------------|----------------------------|---------------------------|
|    | Oats<br><i>(Avena</i><br>sativa L.) | Lovrin 1            | 4350                           | 4785                                  | 2165               | 390                        | -438.8                    |
| 5  |                                     | Mureşana            | 4420                           | 4862                                  | 2212               |                            |                           |
|    |                                     | Ovidiu              | 4840                           | 5324                                  | 2674               |                            |                           |
|    |                                     | Jeremy              | 4510                           | 4961                                  | 2311               |                            |                           |
|    |                                     | Average for<br>oats | 4530                           | 4961                                  | 2310               |                            |                           |
| 6  | Reference                           | Average             | 62.26                          | 6266                                  | 2748.8             | 48.8                       | 0                         |

1 kg wheat grains = 0.95 RON; Production cost/ha = 3000 RON; 1 kg rye grains = 0.9 RON; Production cost/ha = 2900 RON; 1 kg triticale grains = 0.8 RON; Production cost/ha = 3100 RON; 1 kg barley grains = 0.9 RON; Production cost/ha = 3200 RON; 1 kg oats grains = 1.1 RON; Production cost/ha = 2650 RON; Profit = production value – production cost.

### CONCLUSIONS

The 23 varieties of 5 cereal species (wheat, rye, triticale, barley, and oats) cultivated in the pedoclimatic conditions of the Crișurilor Plain showed positive results for all the analyzed morphological and phytochemical indices.

The average plant height was 108 cm and the number of caryopses / inflorescence indicates a good adaptability of the selected varieties to the soil and climatic conditions of the Crișurilor Plain. The best result was given by the rye varieties Suceveana and Gloria with an average of 143.5 cm, followed by triticale - 113.5 cm, barley - 99 cm, and oats - 95 cm.

The highest yields were obtained from triticale varieties (especially Haiduc and Negoiu) and barley (Belissa, Laverda, and Lucian varieties) where average yields exceeded 7000 kg/ha, with values of 7870 kg/ha and 7130 kg/ha respectively, while selected wheat varieties ranked second with an average yield of 6000 kg/ha and can be considered viable for cultivation in this region.

The average percentages of protein (12.54%), fat (2.48%), and starch (62.26%) were within normal limits for all the varieties studied.

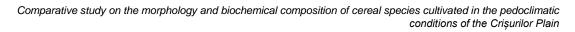
The best results from an economic point of view were obtained for barley, which with a yield of 6417 RON/ha yielded a profit of 3217 RON/ha, followed by triticale, which with a yield of 6296 RON/ha yielded a profit of 3196 RON/ha.

According to the experimental data, the least efficient crop varieties for the Crișurilor Plain, with a profit of 2310 RON/ha and 2321 RON/ha respectively, are oats and rye. However, further studies are needed for a better understanding of their potential.

## **AUTHORS CONTRIBUTIONS**

Conceptualization, O.C.U. and V.T.; methodology, O.C.U., I.O.S., M.E. and E.U.; data collection, O.C.U., M.C.; data validation, O.C.U., E.M., E.U., I.O.S. and V.T.; data processing O.C.U., E.M. and V.B.B.; writing—original draft preparation, O.C.U., I.O.S., M.C. and V.B.B.; writing—review and editing, E.U., E.M. and V.T.

### FUNDING


The present study received no external funding.

### CONFLICT OF INTEREST

The authors declare no conflict of interest.

#### REFERENCES

- Burja, C, Burja, V (2015) The financial performance of agricultural holdings in Romania regional analysis. Annales Universitatis Apulensis: Series Oeconomica, 17 (1), p. 82.
- Chen Q, Zhenru G, Xiaoli S, Meiqiao W, Yazhen F, Jing Z, Ting Z, et al. (2022) Increasing the Grain Yield and Grain Protein Content of Common Wheat (*Triticum aestivum*) by Introducing Missense Mutations in the Q Gene. International Journal of Molecular Sciences, 23 (18), 10772. https://doi.org/10.3390/ijms231810772.
- Chivu L, Jean VA, Marian Z, Gogonea R-M (2020) A Regional Agricultural Efficiency Convergence Assessment in Romania – Appraising Differences and Understanding Potentials. Land Use Policy, 99 (May): 104838. https://doi.org/10.1016/j.landusepol.2020.104838
- Chopade MU, Patil HS, More RB (2017) Cereals and their nutritional value for health benefits. Advance and Innovative Research, 58 (4), pp. 58-61.
- Cocheci RM (2016) Analysis of restrictive environments in the South-West Oltenia development region. Urbanism. Arhitectură. Construcții, 7 (4), pp. 321–340.
- David Gh, Borcean A. (2011) Cereale și leguminoase pentru boabe, Ed. Eurobit, Timișoara.
- Dhankher OP, Foyer CH (2018) Climate Resilient Crops for Improving Global Food Security and Safety. Plant, Cell & Environment, 41 (5), pp. 877–84. https://doi.org/10.1111/pce.13207.
- FAO (2023). Available at https://www.fao.org/statistics/highlights-archive/highlights-detail/agricultural-production-statistics-2010-2023/en
- FAOSTAT (2018) Statistics division of food and agriculture organization of the United Nations. Available at https://www.fao.org/foodagriculture-statistics/en/ (accessed Nov 14, 2020).
- Hufnagel J, Moritz R, Ewert F (2020) Diverse Approaches to Crop Diversification in Agricultural Research. A Review."Agronomy for Sustainable Development, 40 (2), pp. 14. https://doi.org/10.1007/s13593-020-00617-4.
- Igrejas G, Branlard G (2020). The Importance of Wheat. In: Igrejas, G., Ikeda, T., Guzmán, C. (eds) Wheat Quality For Improving Processing And Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-34163-3 1



- Ikram A, Saeed F, Noor RA, Imran A, Afzaal M, Rasheed A, Islam F, Iqbal A, Zahoor T, Naz S, Waheed W, Shahid ZM, Khan AW, Kinki AB (2023) A comprehensive review on biochemical and technological properties of rye (*Secale cereale L.*), International Journal of Food Properties, 26 (1), pp. 2212-2228.
- IUCN NL (2023) Sustainable Plant-Based Worldwide. Guide for Value Chain Management in the Protein Transition. Available at https://www.iucn.nl/en/publication/a-guide-forinternational-value-chain-management-in-theprotein-transition/.
- Kamanova S, Yermekov Y, Shah K, Mulati A, Liu X, Bulashev B, Toimbayeva D, Ospankulova G (2023) Review on nutritional benefits of triticale Review, Czech Journal of Food Sciences, 41 (4), pp. 248-262.
- Kurdyś-Kujawska A, Strzelecka A, Zawadzka D (2021) The Impact of Crop Diversification on the Economic Efficiency of Small Farms in Poland. Agriculture, 11 (3), pp. 250. https://doi.org/10.3390/agriculture11030250.
- Lukinac J, Jukić M (2022) Barley in the Production of Cereal-Based Products. Plants, 11 (24), p. 3519. https://doi.org/10.3390/plants11243519.
- Maningat CC, Seib PA, Bassi SD, Woo KS, Lasater GD (2009) Wheat Starch. In Starch, edited by James BeMiller and Roy B T - Starch (Third Edition) Whistler, 441–510. San Diego: Elsevier. https://doi.org/10.1016/B978-0-12-746275-2.00010-0.
- Paudel D, Dhungana B, Caffe M, Krishnan P (2021) A Review of Health-Beneficial Properties of Oats, Foods, 10 (11), pp. 2591.
- Săndoiu DI (2012) Tehnica experimentală, Ed. Ceres, București.
- Săvescu R, Rotaru M (2021) Market Analysis in the Romanian Agricultural Sector: Statistics Explained. Studies in Business and Economics, 16 (3), pp. 215–30. https://doi.org/10.2478/sbe-2021-0056.
- Schils R, Olesen JE, Kersebaum KC, Rijk B, Oberforster M, Kalyada V, Khitrykau M, et al. (2018) Cereal Yield Gaps across Europe. European Journal of Agronomy, 101 (April): 109–20. https://doi.org/10.1016/j.eja.2018.09.003.
- Ungureanu OC, Popescu MC, Ungureanu E, Sarla CG (2020b) Recursive Algorithm for the Analysis of Metabolic Cycles, International Journal of Computer Science and Network Security, 20 (9), pp 170-178.
- Ungureanu OC, Stana IO, Ungureanu E, Bota VB, Marinescu FC, Turcuş V (2022) Research on some morphological, biochemical and

productivity indices in some genotypes of oats (*Avena sativa L.*) in the pedo-climatic conditions of the Campia Crisurilor area, Studia Universitatis "Vasile Goldiş", Life Sciences Series, 32 (1), pp. 28-34.

- Ungureanu OC, Stana IO, Ungureanu E, Bota VB, Turcuş V (2021) Research regarding morphological, biochemical and productivity indices for some barley (*Hordeum vulgare L.*) genotypes in the pedo-climatic conditions of Crişurilor Plain area, Studia Universitatis "Vasile Goldiş", Life Sciences Series, 31 (1), pp. 47-53.
- Ungureanu OC, Stana IO, Ungureanu E, Bota VB, Turcuş V (2020a) Studies regarding morphological, biochemical and production aspects for some triticale types (*Triticosecale wittmack*) in the climate and soil conditions of Arad Research Journal of Agricultural Science, Timişoara, 1 (52), pp. 217-231.
- Ungureanu OC, Stana IO, Ungureanu E, Bota VB, Marinescu F, Turcuş V (2019) Morphophisiological and productivity aspects of some autumn wheat varieties (*Triticum aestivum L.*) in the climate and soil condition of Arad area (Romania), Studia Universitatis "Vasile Goldiş", Life Sciences Series, 29 (1), pp. 30-37.
- Ungureanu G, Costuleanu CL, Leonte E, Vintu R, Ungureanu BA (2021b) Models of Optimization and Simulation of Agricultural Crop Plans in Agricultural Holdings in Romania. Lucrări Științifice, 64 (2), pp. 1–12. https://www.uaiasi.ro/revagrois/PDF/2021-2/rez/34-rez.pdf.
- USDA (2023) Available at https://www.fas.usda.gov/data/production/comm odity/0451000
- Vlad IM, Tudor V, Stoian E, Micu MM (2015) Farms regional economic developments identified in the FADN panel. In the research institute for agriculture economy and rural development. International symposium. Agrarian economy and rural development: realities and perspectives for Romania. Proceedings. The Research Institute for Agriculture Economy and Rural Development 128.
- Wang J, Vanga S, Saxena R, Orsat V, Raghavan V (2018) Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate, 6 (2), pp. 41. https://doi.org/10.3390/cli6020041.
- YARA (2011) Available at https://www.yara.co.uk/cropnutrition/wheat/increasing-wheat-protein/
- https://www.meteoblue.com Arhiva meteo Arad, 2018-2021.